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A system of equations of conservation which determines the macroscopic motion 
of a moderately concentrated suspension of solid spherical particles subjected to 
moments exerted by an external field is derived. Rheological parameters which 

define the quasi-stationary behavior of such suspension in the presence of an ex- 
ternal field whose intensity is independent of the motion of suspension are deter- 

mined. 
Suspensions of “loaded” particles whose center of gravity is not at their geo- 

metric center in a gravitational or centrifugal field and suspensions of magnet- 
ized particles or particles carrying electric dipoles in an electromagnetic field, 

are examples of disperse systems of particles with dipole moments. Investigations 
of dilute suspensions of this kind (see, e. g., [ 1 - 61) show that the action of ex- 
ternal force couples on suspended particles considerably affects the rheological 
properties of suspension and leads to the emergence of qualitatively new effects, 
in particular, the appearance in the stream of a nonzero antisymmetric tensor 

component. This component depends on the orientation of vectors of the exter- 

nal field intensity and of the curl of the suspension mean velocity with respect 

to the relative moduli of that curl and of external couple. The latter violates 
the Newtonian properties of the stream and results in the formation of non-New- 

tonian properties of suspension. These theoretical conclusions are supported by 

experimental data on viscosimetry of suspensions of magnetized particles, which 
were recently widely publicized n - 81. Of considerable interest is the extension 

of results of investigations [l - 61 to highly concentrated suspension of dipole 
particles in streams in which the antisymmetric and non-Newtonian properties 

are particularly pronounced. The continuous suspension model developed in [9, 
lo] can be used for this purpose. Such extension of the theory of dilute suspen- 
sions of spherical dipoles [l, 21 to moderately concentrated suspensions is pro- 

posed below. 

1. Let us consider a suspension of solid spheres of radius a with a dipole moment 
1) ~7 DT, where !J’ is a unit vector frozen into a particle and the quantity /! is the 
same for all particles. The suspension is in an external field of intensity d which exerts 
on particles the moment 

I,- I)xg=D(Txc) (1.1) 

The suspension is in an external mass field with potential @. If loaded spheres whose 
center of gravity lies at distance x from their geometric centers are considered, then 

T=s,'x, D = “Is na3d,x, g = -_v@ (1.2) 
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where d, is the mean density of the particle material and vector g may be considered 

to be a quantity known a priori and independent of the suspension state. In particu- 
lar, g may represent the acceleration of gravity. 

The situation becomes much more complicated, if particles with electric (magnetic) 
dipole moments are considered, since then vector g in (1.1) defines the local intensity 

of the electric (magnetic) field in the vicinity of a particle, which generally differs from 
the mean intensity and depends on the coniiguration of adjacent particles. Moreover, 

the mean intensity represents the solution of Maxwell equations in the region occupied 

by the suspension and, to a great extent, depends on the distribution of effective permit- 

tivity and magnetic permeability of suspension in that region. These quantities are de- 
termined not only by the related permittivity and permeability of the particle material 

and the continuous suspension phase, but also by the mean volume concentration and 
orientation of particles. Thus in a material medium conventional equations of conser- 
vation of mass, momentum, and moment of momentum of suspension phases are linked 
to the system of Maxwell equations, and this brings forth the additional very complicated 
problem of derivation of the latter equations in their explicit form. We point out that 
the indicated here “physical” nonlinearity and the fundamental difference between sys- 

tem of loaded particles and of particles with electric or magnetic dipole moments were 

not mentioned in [ 1 - 61, which led to the erroneous conclusion in [ 21 about the comp- 
lete analogy between these systems. As shown by experiments p, 81, the effect of sus- 
pension of the external electromagnetic field can be considerable, as for instance, in 

the case of ferromagnetic particles. 
That effect may to a certain extent be neglected only if two conditions are satisfied. 

First, permittivity and magnetic permeability of the two phases must differ only slightly 
from their values in vacuum. Second, the dipole moment of a unit volume of suspension 
which determines the effective vector of dielectric polarization (intensity of magneti- 

zation) of the suspension and is produced by dipole moments of its particles, must be small 
in comparison with the external field intensity. The vector in (1.1) can then be approx- 
imately considered as a quantity independent of the state and behavior of suspension and 

to be definable by solving Maxwell equations for vacuum conditions. 
We also neglect the effect of Brownian rotary motion of suspended particles. The above 

conditions , and also the conditions of the quasi-stationary state of suspension defined 

below, are presented in analytic form at the end of this paper. 
We consider here the assumptions made in [9, lo] in the derivation of the suspension 

model to be valid. In particular we assume the Reynolds number which defines the flow 
around individual particles to be small and the space distribution of particles to be ran- 
dom. The effect of particle disjointness, which is admissible if the concentration of par- 

ticles is not too great. These assumptions and ensuing limitations were considered in 

detail in [lo]. The linear scale of variables which define an observable macroscopic 
flow of suspension is assumed to be considerable in comparison with the scale of suspen- 
sion microstructure and to be of the order of the average distance between adjacent SIX- 
pended particles. The latter is the necessary condition for the averaging over a small 
volume of suspension to be valid and for considering its phases as two interpenetrating 
and interacting continua [9]. 

2. Repeating the reasoning of [9], after averaging over the volume we obtain the 
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equations of conservation of mass, momentum and moment of momentum of phases, 
which differ from the equations in [9] only by the additional term 

(2.1) 

which defines the total moment exerted by field a on particles in a unit of volume and 
appears in the right-hand part of the equation of conservation of the moment of momen- 
tum of the disperse phase. Summation in (2.1) is carried out over particles in the small 

physical volume b containing a number of particles sufficient for averaging. The sub- 
script (jj denotes the particle item number, II is the denumerable concentration of 

particles, and 1 and r represent the values of the external moment L and vector T 

averaged over a great number of particles under identical conditions. We point out that 
the absolutevalue of vector r is smaller than unity, reaching unity only in the limit 
case of identical orientation of all particles. 

The mean force and moment of interphase interaction, the symmetric part of the mean 
stress tensor, and the pseudo-tensor of moment stresses, which appear in the equation of 

conservation of the moment of momentum of the continuous phase, are expressed in 
terms of mean stresses at the surface of an individual particle exactly in the same man- 
ner as in [Q]. The only difference in this case is that it contains the antisymmetric com- 

ponent of the mean stress tensor 
(2.2) 

where e is the alternating antisymmetric Levi-Civita tensor. Formula (2.2) is analog- 

ous to the formula for dilute suspensions [2 -41. The sign in (2.2) is chosen in accord- 

ance with the condition that the divergence of o irii appearing in equations is calculated 

by differentiating with respect to the second subscript, 
We use the scheme developed in [lo] for calculating mean stresses at the surface of 

an individual particle. We carry out the averaging over the conditional distribution 

function of the ensemble of all particles, except some isolated (sample) particle whose 

center is at point r and orientation vector is T. Without entering into details, we point 

out that the only difference between the ensemble distribution functions used here and 
similar functions in [la] is in the appearance of orientation vectors of particles as addi- 
tional arguments of these functions. As the result, we obtain, as previously, the problem 

of flow of a fictitious homogeneous medium around a sample particle rotating at angular 
velocity A*’ dependent on T. Taking in addition into account that by stipulation the lin- 
ear scale of n and 1 considerably exceeds radius a, which determines the scale of per- 
turbations induced by the sample particle in the flow of the fictitius medium, we con- 

clude that in the investigation of flow around the sample particle it is necessary, in ac- 
cordance with the general method of [lo], to disregard the quantity (2.2). Hence the 
properties of the fictitious medium are in this case identical to those of the medium 
considered in [lo], and the problem of flow around a sample particle differs from that 
in [lo] only by that instead of the true mean angular velocity h the velocity A* ap- 

pears in it,- It is obvious that 
L== ~A*(T~~(T)~T (2.3) 

where cp (T) is the distribution function of directions T normalized with respect to 

unity, 
For the unknown stresses at the particle surface we obtain the same expressions as in 



Continual mechanics of monodisperse suspensions 277 

[lo] in which A* is substituted for h so that for the final determination of mean stres- 
ses at the particle surface it is necessary to carry out an additional averaging over v(T). 
The mean interphase force, the symmetric components of suspension mean stresses, and 
the mean moment stresses are generally independent of h and A* and, consequently, 

are the same as those calculated in [lo]. The mean hydrodynamic moment M* exer- 
ted by the surrounding medium on the sample particle is determined by the relationship 

%I* = 8na”po (~~(1)~ - fWf A*), y = r/,rot c (2.4) 

where c is the mean velocity of suspension, and M(r) and :111”), which depend only on 

the volume concentration p of particles and for p --t 0 reduce to unity, were deter- 

mined in [lo]. Note that (2.4) is valid when the characterisitic frequency o of flow is 

considerably lower than frequency wg = ~,,(~&a~)-~, where d, and p. are the density 
and viscosity of the continuo~ phase. Averaging M* in (2.4) over directions T, we 
obtain for the mean interphase moment the previous expression. 

Thus on the basis of results in 19, lo] for o < os for the macroscopic motion ofthe 
considered suspension we have the following equations : 

d& / iit + y7 (EC) = 0, ap / 62 + Yy (pw) = 0, G = 1 - p (2.5) 

d,,a (8 I at + TV) v = - ~JP -i_ 2~ fPe) + ‘G~u(@ - f - d,‘C7@ (2.6) 

d,p (d / dt + w’;;7) w = f - (d, - d,) ppa 

C&F, (8 / dt + t ‘7) K,, = 27 (qy) - 1/5a2J (Ef) -+- h - nl (2.7) 

d,!> (a / dt + ~‘7) K, = m + nl, h = ~~~~~~~~~~~~ 11, K1 = K, (A\ 

where Y and w are the mean velocities of the continuous and the dispersed phases, res- 

pectively, I_’ is the mean pressure in the continuous phase, and ii, and iii, are the mean 
internal moments of momentum of phases per unit of their volume, as determined in [9]. 

Specific formulas for viscosity p, moment viscosity q and for the mean interphase force 

f and moment m per unit volume of suspension appear in [lo]. Tensors e and y are 
determined by the equalities 

Note that the divergence of tensors in (2.6) and (2.7) are computed by differentiation 

with respect to the second subscript. 
The problem of determination of rheological equations for the state of suspension is, 

thus, reduced to the calculation of I in (2, l), after which tensor &a) can be readily 
determined with the use of (2.2). 

3. Assuming that the characteristic frequency w is low in comparison with (I)~ =: 
jL0 (dicl’)-‘, we can neglect the inertia of the sample particle and write the equation of 

its rotation in the form 
(3.1) 

thus obtaining for the angular velocity of the sample particle in (2.4) and (3.1) the 

exnression 

(3.2) 

Using (3.2) in the obvious equation 
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dT / dt = II* x T (3.3) 

which describes the rotation of the frozen-in vector T. we obtain equation 

c!T ,’ dt = CL 1 vc x 3.’ -j-- 7 (8’ .- ?’ (g’T’))l (3.4) 

which is of the same form as the equation analyzed in Cl, 21, Here 9 and 6” are unit 
vectors in the directions of Y and a , and the following parameters have been introduced: 

(3.5) 

The solution of Eq.(3.4) determines the trajectories of vectors T and by the same token 
the distribution function (p (‘T) . 

In the general case the solution of (3.4) presents considerable difficulties, Here, fot- 

lowing [l, 21, we consider only the asymptotic state which is formally attainable for 

t --t m> hence the following results are, strictly speaking, applicable only to the analysis 
of quasi-stationary flows. The characteristic relaxation time T is, in accordance with 

(3.4), equal a-r. Hence the condition of quasi-stationary state for the characteristic 
frequency can be written in the form (11 ,’ %. 

The analysis by Hall and Busenberg [l] and Brenner [2] shows that there are two qua- 

litatively different kinds of asymptotic solutions of equations of the form (3.4) whose 
realization depends on parameter fi in (3.5) and angle y between the directions of v0 
and g’. If i: > 1 or lies in the interval [0, 11 , but r is not equal r/$6, then for 
t -+ 00 vector T assumes an entirely determined position t which from thereon is 
independent of time and defines the final orientation of particles. As was shown in Cl] 

with the use of the Poin~re-Bendixon stability theorem, this final orientation is inde- 

pendent of the initial position of vector T is unique and stable with respect to pertur- 
bations of T of any arbitrary amplitude and direction. Vector ^: is determined by the 
solution of the stationary analog of Eq, (3.4), which is of the form 

where angles $ and $? are defined by 

sit] $r _- {I/% (1 + p”) - lllil (1 + p”)” - PaSin” ~1’~z}‘2 (3.7) 

sin 9s = (P sin y)-l sin $r, sin y = + [I - ~Y”go)21’~‘2 

The choice of sign for srn y is self evident ; the sign of the expression for sin $r in 
(3,7) is chosen so that angle I#, between vectors t and y” lies in the same quadrant asy. 

It is evident that the asymptotic distribution function cp (T) is in this case a delta- 
function, hence the averaging over v (T) reduces in fact to the substitution of 7 for T 

For the asymptotic angular velocity of rotation of a particle from (2.3) and (3.3) we 
obtain 

it* ? 3, = hz (3.8) 

i.e. the particles rotate around axes parallel to ;. Hence from (2.4) and (3.2) for the 

external moment L* exerted on the sample particle by the external field we obtain 

1~” .__ 1 z1 u (Z x g) -.= Hm3y,, (N’% - M% (3.9) 
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Using the definition of angle $r Eq. (3.8), and the scalar product of (3.9) by 7 , we 
further obtain 

(3.10) 

It follows from this and (2.1). (2.2), (3.8) and (3.9) that 

which finally closes the system of equations of conservation (2.5) -(2.7). The denu- 

merable concentration of particles n is defined in (3.11) in terms of volume concentra- 
tion 0. When ill(r) -+ 1 , a similar result is obtained for dilute suspensions from (3.11) 

for p -+ (I [ 1, 21. Note that the sign of c@) in (3.11) is opposite to its sign in [ 1, 21, 
which is due to the difference in the definition of divergence of this tensor in the equa- 

tion of conservation of momentum of the continuous phase. 
The dipole moment of a unit of suspension volume is expressed in terms of the sum 

of moments of particles, i. e. 
d = r&r = (31’0 / has) ‘: (3.12) 

Since, as implied by (3.6), the components of vector ‘F are normal to the direction 

of the external field gJ, the suspension is anisotropic in the sense that its vector of di- 

electric polarization or magnetization is proportional to d defined by (3.12) and lies 
at an angle to R~‘. 

In the particular case of 1’ 1 I/$ and (1 s< 15 < 1 the sample particle rotates 
about a certain axis lying in a plane normal to g’. and the asymptotic orientation of the 
axis in the plane is determined by the particle initial orientation Cl, 21. In that case 

vector ‘F performs a periodic rotation, lying at any instant of time on the generatrix of 
some right circular cone whose vertex angle depends on the initial direction of T. The 

form of the distribution function w (T) also depends on the initial distribution of par- 
ticle orientation. More or less plausible assumptions can be made about that distribution. 

The first hypothesis of this kind was the assumption of a homogeneous initial distribution 
of orientations made in [1 J. However such distribution cannot be actually obtained,since 

it does not satisfy the stationary Liouville equation [3]. It was proposed in that paper to 

use one of the solutions of that equation, without however any substantiation that that 
particular solution is realized. 

An attempt was made in [2] at obtaining a quasi-stationary distribution (p (T) for 
v 4 l/.Ln from the analysis of distributions corresponding to ;: ‘j2n + d with 

b+O. For small b from (3.7) we have 

sin vi z p, sin $ ==: 1 (3.13) 

hence in terms of nl and Q’“J the indicated limits are expressed by 

where the upper and lower signs relate to positive and negative 6 . It will be seen that 
these limits are substantially different (particularly for small p) . Assuming that the 
mean of these limits correspond to y z ‘/,n , we obtain 

nl = -6pM9~.,fh7, u(U) = -3pnry_4%v (3.15) 
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The derivation of (3.15) is based on the concept that in real situations parameter 6 re- 
presents a random function which defines the scatter of angles y in the vicinity or vari- 
ous particles and is the result of weak local inhomogeneities of the stream, and also on 
the fact that vector T is in position z, as defined by (3.6). no matter how small is 

angle 6. 
However for small 1 6 1 the stability of stationary orientation is disrupted in thesense 

that a comparatively small perturbation is sufficient for a forced transition of 1’ through 
1/2x accompanied by a substantial change of the pattern of the particle behavior. In 
particular, however small the effect of rotary Brownian motion on the formation of the 

rheological properties of the stream with 1’ i_ l/-n (see e.g. , [6, 111)) that effect be- 
comes decisive in the region of 1‘ z l/qn [12]. Physical considerations make it obvi- 
ous that in that region Brownian motion must lead to some completely stabilized distri- 
bution independent of the initial state of suspension, 

Since the analysis of Brownian motion is outside the scope of the problem considered 

here, we present only the computation of quantities (2.1) and (2.2) at the limit of a vani- 
shing weak Brownian motion for y = I/?x. This is readily carried out by using the limit 
distribution function CP (T) derived by Hinch and Lea1 [12] for dilute suspensions. Using 

the method of [12] it can be readily shown that the form of that function remains un- 
changed in the case of suspensions of moderate concentration considered here. The 

final formulas are of the form 

(3.16) 

For I\ c-l 1 the quantities defined by (3.16) substantially differ from those in (3.14), 

owing to previously noted effect of Brownian motion on the change of the rotation pat- 

tern of particles. The condition for realizing (3.14) can be obtained in exactly the same 

manner as in fl2]. We have 

(3.18) 

where Dn,. is the coefficient of rotational Brownian diffusion defined in (3.18) in terms 

of temperature in energy units in conformity with Einstein’s formula. Formulas (3.16) 
remain valid for the reversed inequality (3.18). Formulas for intermediate values of Ii> 1 
can be obtained in principle by applying to the equation for dT/di which contains a 
diffusion term of the method of matching asymptotic expansions. 

Thus the rheological parameters of a suspension related to the presence of dipole in- 
teraction with the external field suffer at transition through 1’ = 1/z n and abrupt change 
in the region 

(3.19) 

From the point of view of the theory in which Brownian motions are not taken into con- 
sideration such abrupt change of parameters is taken as a disturbance of the continuity 
of their dependence on y, i. e. on the orientation of flow relative to the external field. 
A similar conclusion with respect to dilute suspensions was reached in [2, 111. 

We also point out that for concentrated suspensions the limitation(3.18)is lessstringent 
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than for diluted ones, since &f(l) and M(s) are rapidly increasing functions of concen- 

tration [lo]. 

4. The equations of conservation (2.5) -(2.7) together with the results presented in 
[lOI and in Sect. 3 above make it possible to investigate flows of the simplest kind in- 

cluding viscosimetric ones, as was done in [Z] for dilute suspensions. As an example we 

consider here only a Couette flow with constant concentration of suspension. For the 

purpose of this Sect. it is sufficient to consider the particular case of such flow in which 
the phase velocities v and w are equal to the velocity of suspension specified in the 

form c II: G&, where G is the rate of shear, and assume 

g” E hL sin y ~0s 6 $ y” sin y sin 0 -I- f COS y (4.1) 

where x0, >-” and z” are unit vectors of the coordinate axes and 6 is a certain angle 
which determines the direction of projection of gjin the plane (z. !j). It can be readily 

shown with the use of equations of conservation derived.in Sect. 2 that such flow can be 
obtained either when the densities of particles and fluid are equal or in the absence of 
an external mass field. Taking into account that v -= l/&z”, after computations based 
on formulas derived in Sects.2 and 3 for the components of the ffow mean stress tensor 

we obtain the following expressions: 

(4.2) 

,’ = PO (1 + 5i? pS) (4.3) 

with 1~ representing the effective viscosity of suspension in the absence of an external 
field or dipole moments of particles, and determined in [lo]. For o = 6 functions 

M (p) and S (p) are equal unity and rapidly increase with P. The Couette ilow viscosity 
tt’ which is determined experimentally can be defined as the ratio of the tangential 

component of force in the direction y” which acts on a small unit area of plane (IJ, z). 

i. e. of parameter ovX’% to the shear rate C. It is more convenient to consider the reduced 

viscosity 
irt] =L 

p”r-IL, 

lW (4.4) 

In the particular cases, when the external field is parallel (~2 = 0 or -_O or normal (T = 
I/* n) to the curl vector from (4.4) we have, respectively, 

[p] = 5i.Ls, [ 111 = “id 4 Slrf32iCf (4.5) 

Similarly for b = 0.1 or cx3 , we have, respectively, 

[r_lI = 5/x8, lrtl = VSJ‘ -+- s/!3nr (1 - 1 cm y II (4.6) 
[it] = 5/3S $ :/.L ~$1 sin” 1 

For dilute suspensions formulas (4.4) - (4.6) coincide with those derived in [ 21. Other 
characteristics of the Couette flow, which are important for equations of conservation 
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are not difficult to obtain, In particular tensor y in (2. 8) is identically zero, and mo- 
ment stresses are absent in this flow. 

Thus it follows from the analysis of this particular case that a suspension of dipole 
particles in an external field is in two respects non-Newtonian. First, the effective vis- 
cosity coefficients depend on the rate of shear which appears in the definition of para- 

meter fi in (3.5). Second, the tensor proportionality between mean stresses and rates of 
shear is disturbed, resulting in the appearance in (4.2) of stresses normal to the plane 
of flow. The suspension is not only an anisotropic dielectric or magnet, but also an ani- 
sotropic body in the hydrodynamic sense. These two conclusions are obviously of a gene- 
ral character. 

Since M increases with increasing p faster then S (see [lo]), the relative import- 

ance for non-Newtonian and antisymmetric properties increases with increasing concen- 
tration of the suspension. 

We note that Batchelor, when considering an artificial example of suspension [4] whose 
particles are subjected to an external force couple independent of particle motion, con- 
cluded that such suspension is a “quasi-Newtonian” medium in the sense that meanstres- 

ses are expressed in terms of velocity derivatives with respect to coordinates by the lin- 

ear tensor relationship 
(4.7) 

which contains the fourth rank tensor of viscosity coefficients. It is evident that for real 

flows with dipole interaction between particles and the external field this conclusion is 
false, since not only the viscosity coefficients themselves depend on velocity derivatives 
but, as follows from (3.6) and (3. ll), tensor o’ has a component which is proportional 

to E.$. 

5. In the foregoing we made use of assumptions on which the concept of continuous 

mechanics of suspension is based in [9, lo], where these assumptions are discussed in 
detail and briefly mentioned in Sect. 1 above. Here we consider only new assumptions 

specific to this work. 
First of all, we note that the condition of independence of the external electric or 

magnetic field from the state ofsuspension requires that the related permittivity and rnag.. 

netic permeability differ only slightly from those in vacuum and that in addition the 

inequality 
hntl ~z :3rjDa-” < R (5.1) 

which confirms the low polarization (magnetization) of suspension, produced by the di- 
pole moment (3.12) in comparison with the field intensity, be satisfied. 

The condition of weak effect of Brownian motion means that the reciprocal of the 
P&let number IjB,. for rotational Brownian diffusion is small in comparison with unity. 

This condition may be written as 

(5.2) 

Note that this condition is violated when 1’ is fairly close to ‘/,x for arbitrary small 
diffusion coefficient n I;r (see estimate in (3.18)). Condition (5.2) imposes the lower 
limit on the admissible radius a of suspension particles. 

The results obtained here are valid for flows whose characteristic frequency (1) is not 
excessively high. We have three related conditions of quasi-stationarity 
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(5.3) 

Considering that smallness of the Reynolds number of the flow around particles implies 
the fulfilment of inequalities 

ad,+ < POT a’&& < cc0 (u = v - w) (5.4) 

we conclude that in real situations the first two conditions of (5.3) are usually satisfied 
and that the most restrictive is the third condition of quasi-stationarity. Unlike (5.2)) 

conditions (5.3) and (5.4) impose the upper limit on the particle radius. 
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